View on GitHub

anoushka-pandey

My ACTL1101 Repository

Introduction to General Insurance

Motivation

General Insurance

Main Features of General Insurance Products

Actuarial Modelling: Frequency and Severity

Frequency (or Occurrence)

On a general insurance policy, it is often possible to claim more than once. We call frequency the number of claims. Typical models (distributions) for frequency include:

Example 9.1

Using the following claims data, estimate the Poisson parameter $\lambda$.

Number of claims Number of drivers
0 89,235
1 2,321
2 300
3 0
4 2
5 1
6 or more 0

Solution

Remember from Week 2, a good estimator for $\lambda$ is $\widehat{\lambda} = \bar{X}$. Here the total number of claims is:

\[89235 \times 0 + 2321 \times 1 + 300 \times 2 + 0 \times 3 + 2 \times 4 + 1 \times 5 = 2934\]

The total number of drivers is 91,859, so that the sample mean $\bar{X}$ (of number of claims per driver) is:

\[\bar{X} = \frac{2934}{91859} = 0.03194\]

And this is our estimate:

\[\lambda^* = 0.03194\]

Poisson Process

Example 9.2

You just made a claim on your motor vehicle insurance policy. The claims you make per year arise as a Poisson Process with $\lambda = 0.5$. Determine the expected time to the next claim and the probability that you will have a claim in the next 6 months.

Solution

\[\frac{1}{0.5} = 2 \text{ years}\] \[1 - e^{-0.5 \times 0.5} = 0.2212\]

Actuarial Modelling of Severity

Combining Frequency and Severity

\[S = X_{1} + X_{2} + \ldots + X_{N} = \sum_{i=1}^{N} X_{i}\]

Aggregate loss: $E[S]$ and $\text{Var}[S]$

\[E[S] = E[E[S | N]], \qquad \text{Var}[S] = E[\text{Var}[S|N]] + \text{Var}[E[S|N]]\] \[E[S] = E\left[\sum_{i=1}^{N} X_{i}\right] = E \left[ E\left[\sum_{i=1}^{N} X_{i} \Big{|} N\right] \right] = E[N \cdot E[X_i]] = E[N] \cdot E[X_i]\] \[\text{Var}[S] = E[\text{Var}[S|N]] + \text{Var}[E[S|N]] = E[N \cdot \text{Var}[X_i]] + \text{Var}[N \cdot E[X_i]] = E[N] \text{Var}[X_i] + \text{Var}[N] (E[X_i])^2\]

Deductibles

What is a Deductible?

\[\begin{cases} S, & \text{for } S \leq d \\ d, & \text{for } S > d \end{cases}\] \[Y = \begin{cases} 0, & \text{for } S \leq d \\ S - d, & \text{for } S > d \end{cases}\]

Pricing with a Deductible

\[\Pr[Y = 0] = \Pr[S \le d], \text{ and} \\ f_Y(y) = f_S(y + d) \text{ for } y > 0.\] \[E[Y] = 0 \cdot \Pr[Y = 0] + \int_0^\infty y f_Y(y) dy = \int_0^\infty y f_S(y + d) dy\]

Example

\[y + d = s \quad \iff \quad y = s - d\] \[E[Y] = \int_{d}^{\infty} (s - d) f_{S}(s) ds = \int_{d}^{\infty} s f_{S}(s) ds - d \int_{d}^{\infty} f_{S}(s) ds = \int_{d}^{\infty} s f_{S}(s) ds - d (1 - F_{S}(d))\]

Example

\[E[Y] = \int_0^\infty y f_S(y + d) dy = \int_{0}^{\infty} y \beta e^{-\beta y} e^{-\beta d} dy = e^{-\beta d} \int_{0}^{\infty} y \beta e^{-\beta y} dy = e^{-\beta d} \frac{1}{\beta}\]

Premium Rating

Principle of Equivalence

\[\textbf{EPV of premiums} = \textbf{EPV of claims + EPV of expenses}\]

Premium Rating: Example 9.4

Under the Principle of Equivalence, what is the premium for this policy?

Solution

\[P = \frac{E\left[ S \right]}{\left( 1 + r \right)} + C = \frac{E\left[ X \right] E\left[ N \right]}{\left( 1 + r \right)} + C\] \[E\left[ N \right] = 0.1, \text{ and } E\left[ X \right] = e^{7.5 + \frac{1}{2} 0.06^{2}} = 1811.3\] \[\frac{0.1 \times 1811.3}{1.07} + 100 = \$269.3\]

CAS ratemaking principles

Taken from CAS ratemaking principles:

Unearned Premiums

Unearned Premiums

Calculations

\[\text{Earned premium} = \text{Premiums Received} + \text{Unearned Premium at the Start} - \text{Unearned Premium Provision at the End}\]

Example 9.5

Annual premiums received by month for a class of insurance business during the year are listed as follows:

Month Premiums received
January $112,234
February $60,345
March $54,780
April $115,200
May $80,900
June $150,755
July $16,340
August $50,234
September $112,600
October $90,765
November $112,400
December $212,000

Unearned Premiums - Solution

Month Premiums Unearned Fraction as 24ths Unearned Premium
January $112,234 1 $4,676
February $60,345 3 $7,543
March $54,780 5 $11,413
April $115,200 7 $33,600
May $80,900 9 $30,338
June $150,755 11 $69,096
July $16,340 13 $8,851
August $50,234 15 $31,396
September $112,600 17 $79,758
October $90,765 19 $71,856
November $112,400 21 $98,350
December $212,000 23 $203,167
Total     $650,043

Outstanding Claims

Outstanding Claims

Run-Off triangle example

Example 9.6: Run-off triangle actual claim payments (Hossack et al., 1999 - Table 10.2.1 p208)

Accident Year 1 2 3 4 5 6
2015 90 120 100 110 80 0
2016 130 150 80 100 140  
2017 140 150 150 160    
2018 160 80 180      
2019 120 140        
2020 110          

Outstanding claims liabilities

Accident Year 1 2 3 4 5 6
2015 90 210 310 420 500 500
2016 130 280 360 460 600  
2017 140 290 440 600    
2018 160 240 420      
2019 120 260        
2020 110          

The Chain Ladder method

The central idea is that we assume a regular development pattern:

\[C_{i,j} \times f_{j} \approx C_{i, j+1}\]

The Chain Ladder method (cont’d)

Estimation of $f_j$, denoted $\hat{f}_j^{CL}$

One can calculate empirical factors from the cumulative triangle:

Accident Year 1 2 3 4 5 6
2015 2.333 1.476 1.355 1.190 1.000  
2016 2.154 1.286 1.278 1.304    
2017 2.071 1.517 1.364      
2018 1.500 1.750        
2019 2.167          
2020            
Simple Avg 2.045 1.507 1.332 1.247 1.000  
Weighted Avg 2 1.5 1.333 1.25 1  

Example

Develop the cumulative triangle:

Accident Year 1 2 3 4 5 6
2015 90 210 310 420 500 500
2016 130 280 360 460 600 600
2017 140 290 440 600 750 750
2018 160 240 420 560 700 700
2019 120 260 390 520 650 650
2020 110 220 330 440 550 550

Example (cont’d)

From the cumulative triangle, find the incremental claims:

Accident Year 1 2 3 4 5 6 Total
2015 90 120 100 110 80 0 -
2016 130 150 80 100 140 0 0
2017 140 150 150 160 150 0 150
2018 160 80 180 140 140 0 280
2019 120 140 130 130 130 0 390
2020 110 110 110 110 110 0 440

To discount or not to discount?

Reserves Discounting: Example

Reserves Discounting: Solution

\[\frac{110 + 130 + 140 + 150}{\left( 1.05 \right)^{0.5}} = 517.23\]

Example 9.7

Run-off triangle as at 31 December 1999 shows estimates of the expected value of outstanding claims. All claims are settled by the end of development year 4.

Year of Origin 0 1 2 3 4
1995 580,222 466,679 240,001 133,601 54,912
1996 494,534 499,293 192,227 159,007 67,185
1997 551,136 509,075 238,245 196,972 82,060
1998 648,031 664,188 309,630 240,582 100,229
1999 746,003 778,777 378,183 293,848 122,420

The following interest rates are used to discount the expected value of outstanding claims in order to determine the outstanding claims provision as at 31 December 1999.

Time to payment (years) Effective interest rate p.a.
0.5 5.00\%
1.5 5.50\%
2.5 5.90\%
3.5 6.50\%

Solution

\[\frac{67,185}{\left( 1.05 \right)^{0.5}} = 65,566\] \[\frac{196,972}{\left( 1.05 \right)^{0.5}} + \frac{82,060}{\left( 1.055 \right)^{1.5}} = 267,952\] \[\frac{309,630}{\left( 1.05 \right)^{0.5}} + \frac{240,582}{\left( 1.055 \right)^{1.5}} + \frac{100,229}{\left( 1.059 \right)^{2.5}} = 611,031\] \[\frac{778,777}{\left( 1.05 \right)^{0.5}} + \frac{378,183}{\left( 1.055 \right)^{1.5}} + \frac{293,848}{\left( 1.059 \right)^{2.5}} + \frac{122,420}{\left( 1.065 \right)^{3.5}} = 1,461,824\] \[65,566 + 267,952 + 611,031 + 1,461,824 = 2,406,375\]